

Evoke: Evolutionary signalling games with Python

evoke is a Python library for evolutionary simulations of signalling games.
It is particularly oriented towards reproducing results and figures from the literature, and offers a simple and intuitive API.

	Tutorial[#1] | Google Colab

	Documentation[#2] You are here! | ReadTheDocs

	Package[#3] | PyPI

	Source code[#4] | GitHub

Note

This project is under active development.

Contents:

	Usage
	Installation

	Tutorial

	The simplest case: reproducing a figure from the literature

	Creating simulations

	Examples
	Skyrms (2010) Signals

	Godfrey-Smith & Martínez (2013)

	Full API
	Figure objects figure.py

	Evolve objects evolve.py

	Game objects games.py

	Calculations calculate.py

	Calculations relating to common interest common_interest.py

	Calculations relating to information theory info.py

	Exceptions exceptions.py

Indices and tables

	Index

	Module Index

Footnotes

[#1]
https://colab.research.google.com/drive/1AwUCP05lpITAP7_EZD7loGv3unhnwvhM#forceEdit=true&sandboxMode=true

[#2]
https://evoke.readthedocs.io/en/latest/

[#3]
https://pypi.org/project/evoke-signals/

[#4]
https://github.com/signalling-games-org/evoke

Usage

Installation

To use evoke, first install it using pip:

(.venv) $ pip install evoke_signals

Tutorial

The best way to discover evoke is the interactive tutorial[#1].
The rest of this document describes very simple use cases.

The simplest case: reproducing a figure from the literature

The easiest thing to do with evoke is recreate a figure from the signalling game literature.
The parameters required to create some of these figures are included in the examples folder.

For example, to create figure 5.2 from Signals (Skyrms 2010), you would run:

Skyrms2010_5_2()

This creates an object which runs an evolutionary simulation with parameters as close as possible to those described by Bryan Skyrms for the figure in the book.

In this case evoke creates a figure very close to the original.
In other cases there might be a range of random properties that can cause deviation from the figures in the literature.
It’s often a good idea to create the same figure multiple times, to get a feel for the range of variation that can be produced by the reported parameters.

Creating simulations

If you want to create custom simulations, you need to create two kinds of object:

	game: This describes properties of the game, including the probabilities of each observable state, the number of signals available, and the payoff matrices of sender and receiver.

	evolve: This describes properties of the evolutionary scenario, especially whether the ‘agents’ are populations evolving via selection or individuals learning via reinforcement.

Games and evolve objects can be mixed and matched.
This allows you to see differences between evolution and reinforcement learning, by taking the same game and plugging it into different evolve objects.

Footnotes

[#1]
https://colab.research.google.com/drive/1AwUCP05lpITAP7_EZD7loGv3unhnwvhM#forceEdit=true&sandboxMode=true

Examples

Skyrms (2010) Signals

evoke library examples from:

Skyrms, B. (2010). Signals: Evolution, Learning, and Information. Oxford University Press.

	
class skyrms2010signals.Skyrms2010_1_1

	Figure 1.1, page 11, of Skyrms (2010).
The figure depicts the replicator dynamics of a population
repeatedly playing a two-player cooperative game
where each agent in the population either always plays sender
or always plays receiver.
Senders observe one of two randomly chosen states of the world and produce one of two signals.
Receivers observe the signal and produce one of two acts.
If the act matches the state, both players gain a payoff.

	
initialize_simulation() → None[#1]

	Sets the figure parameters as class attributes.

	
run_simulation()

	Technically this figure does not require a simulation.
It describes how a population of two types would evolve
if it were playing a cooperative game.

	Returns:

	evo – The evolutionary scenario is represented by an object from the module evolve.

	Return type:

	an instance of evolve.TwoPops.

	
class skyrms2010signals.Skyrms2010_1_2

	Figure 1.2, page 12, of Skyrms (2010).
The figure depicts the replicator dynamics of a population
repeatedly playing a two-player cooperative game
where each agent in the population can switch between playing sender or receiver.

	
initialize_simulation() → None[#2]

	Sets the figure parameters as class attributes.

	
run_simulation()

	Technically this figure does not require a simulation.
It describes how a population of one type would evolve
if it were playing a cooperative game.

	Returns:

	evo – The evolutionary scenario is represented by an object from the module evolve.

	Return type:

	an instance of evolve.OnePop.

	
class skyrms2010signals.Skyrms2010_3_3(iterations=100)

	Figure 3.3, page 40, of Skyrms (2010).
The figure depicts the mutual information between signal and state
over successive trials of a two-player cooperative game
in which agents learn via reinforcement.
Typically the mutual information will increase over time as the agents learn
to use specific signals as indicators of specific states.
However, the stochastic nature of the simulation means that the figure will look different
each time it is run.

	
initialize_simulation() → None[#3]

	Sets the figure parameters as class attributes.

	
run_simulation(iterations)

	Create a game object and an evolution object,
and run the game <iterations> times.

	Parameters:

	iterations (int[#4]) – Number of timesteps in the simulation i.e. number of repetitions of the game.

	Returns:

	evo – The evolve object controls simulations.

	Return type:

	evolve.MatchingSR

	
class skyrms2010signals.Skyrms2010_3_4(iterations=100)

	Figure 3.4, page 46, of Skyrms (2010).
The figure depicts the change over time of the average probability of success
in a cooperative signalling chain game.
In this game there is a sender, an intermediary, and a receiver.
There are two signals, between the sender and intermediary and between the
intermediary and receiver.
It takes a lot longer for signalling to become established in this game.
The original figure uses one million iterations (1e6); however,
the probability of success often reaches 1 after just one hundred thousand iterations (1e5).

	
initialize_simulation() → None[#5]

	Sets the figure parameters as class attributes.

	
run_simulation(iterations)

	Create a game object and an evolution object,
and run the game <iterations> times.

	Parameters:

	iterations (int[#6]) – Number of timesteps in the simulation i.e. number of repetitions of the game.

	Returns:

	evo – The evolve object controls simulations.

	Return type:

	evolve.MatchingSIR

	
class skyrms2010signals.Skyrms2010_4_1

	Figure 4.1, page 59, of Skyrms (2010).
The figure depicts cycles in the replicator dynamics of a rock-paper-scissors game.

	
initialize_simulation() → None[#7]

	Sets the figure parameters as class attributes.

	
run_orbits()

	Generate the cycles in the replicator dynamics.

The cycles are stored as class attribute self.xyzs.
This is used by the superclass Ternary in the method self.show().

	Returns:

	evo – The evolve object for a one-population game.

	Return type:

	evolve.OnePop

	
class skyrms2010signals.Skyrms2010_5_2

	Figure 5.2, page 72, of Skyrms (2010).
The figure shows the value of assortment that is required to destabilise pooling
in a 2x2x2 cooperative signalling game.
Assortment is defined as the probability of meeting another player in the population
who is the same type as you.
Pooling is any strategy that produces the same signal for more than one state.

Skyrms describes this model on page 71:

“Here we consider a one-population model, in which
nature assigns roles of sender or receiver on flip of a fair coin. We
focus on four strategies, written as a vector whose components are:
signal sent in state 1, signal sent in state 2, act done after signal 1, act
done after signal 2.

s1 = <1, 2, 1, 2>

s2 = <2, 1, 2, 1>

s3 = <1, 1, 2, 2>

s4 = <2, 2, 2, 2>”

	
show()

	Show the figure.

We call the superclass method and tell it to show the line
along with the datapoints.

	
initialize_simulations() → None[#8]

	Sets the figure parameters as class attributes.

	
run_simulations()

	Create games and run simulations.

The vectors s1-s4 defined on page 71 of Skyrms (2010)
define the playertypes payoffs.

	Returns:

	y_axis – Results; the required assortment level for each value of pr_state_2.

	Return type:

	list[#9]

	
class skyrms2010signals.Skyrms2010_8_1(iterations=1000)

	Figure 8.1, page 95, of Skyrms (2010).
The figure depicts the change over time of the probability of success
in a two-player cooperative game where the agents learn by reinforcement.

	
show()

	Show the figure.

We call the superclass method and tell it to show the line
along with the datapoints.

	Return type:

	None.

	
initialize_simulation() → None[#10]

	Sets the figure parameters as class attributes.

	
run_simulation(iterations)

	Create game and run simulation.

	Parameters:

	iterations (int[#11]) – Number of timesteps.

	Returns:

	evo – The simulation object.

	Return type:

	evolve.MatchingSR

	
class skyrms2010signals.Skyrms2010_8_2(trials=100, iterations=1000)

	Figure 8.2, page 97, of Skyrms (2010).
The figure depicts the probability of pooling in a signalling game with
reinforcement learning for different initial weights.
Initial weights determine how difficult it is to learn something new:
large initial weights mean that learning is slower.

Skyrms does not explicitly state the number of trials or number of iterations
used to generate his figure.
We suspect the parameter values are something like
trials=int(1e3) and iterations=int(1e5).
However, attempting to generate this figure with those values
will take an exceptionally long time.

Even with iterations=int(1e4), it’s looking like 12 minutes per weight,
so about an hour overall.

This, combined with the difficulty of figuring out exactly how Skyrms is
identifying pooling equilibria, leads to us overestimating
the probability of pooling.
You are warned!

	
show() → None[#12]

	Show the figure.

We call the superclass method and tell it to show the line
along with the datapoints.

	
initialize_simulation() → None[#13]

	Sets the figure parameters as class attributes.

	
run_simulation(trials, iterations) → None[#14]

	Create game and run simulations.

	Parameters:

	
	trials (int[#15], optional) – Number of times to repeat a simulation with specific parameters.
The default is 100.

	iterations (int[#16], optional) – Number of timesteps in each simulation.
The default is int(1e3).

	
class skyrms2010signals.Skyrms2010_8_3(trials=100, iterations=300, learning_params=[0.01, 0.03, 0.05, 0.07, 0.1, 0.15, 0.2])

	Figure 8.3, page 98, of Skyrms (2010).
The figure depicts the probability of signalling for different
values of the learning parameter in a Bush–Mosteller reinforcement scenario.

Our recreation of this figure is clearly undercounting signalling.
That’s because we are defining signalling as “not pooling”,
and we are overcounting pooling (see the docstring for class Skyrms2010_8_2).

In future, we need to try and count both pooling and signaling
more accurately; this is difficult, since we don’t know exactly
how Skyrms defines them for the purposes of his figures.

	
initialize_simulation(learning_params) → None[#17]

	Sets the figure parameters as class attributes.

	Parameters:

	learning_params (array-like, optional) – Learning parameters to run simulations for.

	
run_simulation(trials, iterations) → None[#18]

	Create game and run simulations.

	Parameters:

	
	trials (int[#19], optional) – Number of times to repeat each simulation.

	iterations (int[#20], optional) – Number of timesteps per simulation.

	Returns:

	evo – Simulation object.

	Return type:

	evolve.BushMostellerSR

	
class skyrms2010signals.Skyrms2010_10_5(trials=1000, iterations=10000)

	Figure 10.5, page 130, of Skyrms (2010).
The figure depicts the number of signals at the end of reinforcement
for a cooperative game in which senders can invent new signals.

NB Skyrms uses trials=1000 and iterations=int(1e5) but this will take a very long time.

	
initialize_simulation() → None[#21]

	Sets the figure parameters as class attributes.

	
run_simulation(trials, iterations) → None[#22]

	Run <trials> trials with <iterations> iterations each.

	Parameters:

	
	trials (int[#23]) – Number of simulations.

	iterations (int[#24]) – Number of iterations per trial.

Godfrey-Smith & Martínez (2013)

evoke library examples from:

Godfrey-Smith, P., & Martínez, M. (2013). Communication and Common Interest.
PLOS Computational Biology, 9(11), e1003282. https://doi.org/10.1371/journal.pcbi.1003282

The supporting information (including important definitions)
can be found at https://doi.org/10.1371/journal.pcbi.1003282.s001

How to use this script

Quick run: Create figure objects with demo=True.

Figures 1 and 2, full run, minimal parameters:

	Decide how many games per value of C you want to analyse, games_per_c.
Godfrey-Smith and Martínez use 1500.

	Run find_games_3x3(games_per_c).
This will generate games_per_c games per value of C and store them in a local directory.

	Run analyse_games_3x3(games_per_c). This will calculate values required to create figures 1 and 2.
This can take a long time! 1500 games takes about 30 minutes.

	Run GodfreySmith2013_1(games_per_c, demo=False) to create Figure 1.

	Run GodfreySmith2013_2(games_per_c, demo=False) to create Figure 2.

Figure 3a (sender), full run, minimal parameters:

	Decide how many games per value of C and K you want to analyse, games_per_c_and_k.
Godfrey-Smith and Martínez use 1500.

	Run find_games_3x3_c_and_k(games_per_c_and_k,sender=True).
This will generate games_per_c_and_k games per pair of values C and K and store them locally.

	Run analyse_games_3x3_c_and_k(games_per_c_and_k,sender=True). This will calculate values required to create figure 3.
This can take a long time!

	Run GodfreySmith2013_3_sender(games_per_c_and_k,demo=False) to create Figure 3a.

Figure 3b (receiver), full run, minimal parameters:

	Decide how many games per value of C and K you want to analyse, games_per_c_and_k.
Godfrey-Smith and Martínez use 1500.

	Run find_games_3x3_c_and_k(games_per_c_and_k,sender=False).
This will generate games_per_c_and_k games per pair of values C and K and store them locally.

	Run analyse_games_3x3_c_and_k(games_per_c_and_k,sender=False). This will calculate values required to create figure 3.
This can take a long time!

	Run GodfreySmith2013_3_receiver(games_per_c_and_k,demo=False) to create Figure 3a.

	
class godfreysmith2013communication.GodfreySmith2013_1(games_per_c=50, demo=True, dir_games='../data/')

	Original figure: https://doi.org/10.1371/journal.pcbi.1003282.g001

How probable is an information-using equilibrium in a randomly-chosen game
with a particular level of common interest?

Common interest here is defined as Godfrey-Smith and Martínez’s measure C.

How to use this class

You have two options to create this figure: demo mode and full mode.

	Demo mode omits hard-to-find classes and places an upper limit on games_per_c.
This allows it to run in a reasonable amount of time.

	Full mode requires an existing set of game data stored in JSON files.
These can be created via the functions find_games_3x3() and analyse_games_3x3().

The reason for demo mode is that the figure takes a VERY long time to create
with the published parameter of games_per_c=1500.
Realistically we need to prepare by finding games_per_c games for each value of C,
storing them in a local JSON file, and calling them at runtime to count the equilibria.
Demo mode omits games with c=0.000 and c=0.111 because they are especially hard to find.

	
load_saved_games(dir_games, games_per_c) → None[#25]

	Get sender and receiver matrices and load them into game objects.
Put them into dictionary self.games.

The games should already exist in dir_games with filenames of the form:

f”{dir_games}games_c{c_value:.3f}_n{games_per_c}.json”

	Parameters:

	
	dir_games (str[#26]) – Directory containing JSON files with sender and receiver matrices.

	games_per_c (int[#27]) – Number of games per value of C.

	
create_games_demo(games_per_c) → None[#28]

	Create game objects in demo mode.

Put them into dictionary self.games.

	Parameters:

	games_per_c (int[#29]) – Number of games per value of C.

	
calculate_results_per_c() → None[#30]

	For each value of <self.c_values>, count how many games
have info-using equilibria.

	
class godfreysmith2013communication.GodfreySmith2013_2(games_per_c=50, demo=True, dir_games='../data/')

	Original figure: https://doi.org/10.1371/journal.pcbi.1003282.g002

What is the highest level of information transmission at equilibrium
across a sample of games with a particular level of common interest?

Common interest here is defined as Godfrey-Smith and Martínez’s measure C.

How to use this class

You have two options to create this figure: demo mode and full mode.

	Demo mode omits hard-to-find classes and places an upper limit on games_per_c.
This allows it to run in a reasonable amount of time.

	Full mode requires an existing set of game data stored in JSON files.
These can be created via the functions find_games_3x3() and analyse_games_3x3().

The reason for demo mode is that the figure takes a VERY long time to create
with the published parameter of games_per_c=1500.
Realistically we need to prepare by finding games_per_c games for each value of C,
storing them in a local JSON file, and calling them at runtime to count the equilibria.
Demo mode omits games with c=0.000 and c=0.111 because they are especially hard to find.

	
load_saved_games(dir_games, games_per_c) → None[#31]

	Get sender and receiver matrices and load them into game objects.
Put them into dictionary self.games.

The games should already exist in dir_games with filenames of the form:

f”{dir_games}games_c{c_value:.3f}_n{games_per_c}.json”

	Parameters:

	
	dir_games (str[#32]) – Directory containing JSON files with sender and receiver matrices.

	games_per_c (int[#33]) – Number of games per value of C.

	
create_games_demo(games_per_c) → None[#34]

	Create game objects in demo mode.

Put them into dictionary self.games.

	Parameters:

	games_per_c (int[#35]) – Number of games per value of C.

	
calculate_results_per_c(games_per_c) → None[#36]

	For each value of <self.c_values>, count how many out of <games_per_c> games
have info-using equilibria.

	Parameters:

	games_per_c (int[#37]) – Number of games to generate per level of common interest.

	
class godfreysmith2013communication.GodfreySmith2013_3(games_per_c_and_k=150, k_indicator=None, demo=False, dir_games='../data/')

	See figure at https://doi.org/10.1371/journal.pcbi.1003282.g003

This object requires an existing set of game data stored in JSON files.
These can be created with find_games_3x3_c_and_k() and
analyse_games_3x3_c_and_k().
See the section How to use this script for more.

Demo mode is not yet available for this figure.

	
load_saved_games(dir_games) → None[#38]

	Get sender and receiver matrices and load them into game objects.
Put them into dictionary self.games.

The games should already exist in dir_games with filenames of the form:

f”{dir_games}games_c{c_value:.3f}_{ks or kr}{k_value:.3f}_n{games_per_c_and_k}.json”

	Parameters:

	dir_games (str[#39]) – Directory containing JSON files with sender and receiver matrices.

	
calculate_results_per_c_and_k() → None[#40]

	For each pair of self.c_values and self.k_values, count how many games
have info-using equilibria.

	
class godfreysmith2013communication.GodfreySmith2013_3_sender(**kwargs)

	Wrapper for GodfreySmith2013_3(),
calling with parameter self.k_indicator = “ks”
to create figure 3a.

	
class godfreysmith2013communication.GodfreySmith2013_3_receiver(**kwargs)

	Wrapper for GodfreySmith2013_3(),
calling with parameter self.k_indicator = “kr”
to create figure 3b.

	
godfreysmith2013communication.calculate_D(payoff_matrix, state, act_1, act_2) → float[#41]

	Calculate an agent’s relative preference of acts act_1 and act_2
in state state.

The measure is defined in the supplement of Godfrey-Smith and Martínez (2013), page 1.

	Parameters:

	
	payoff_matrix (array-like) – The agent’s payoff matrix.

	state (int[#42]) – Index of the state.

	act_1 (int[#43]) – Index of the first act to be compared.

	act_2 (int[#44]) – Index of the second act to be compared.

	Returns:

	D – Godfrey-Smith and Martínez’s measure D.

	0 if act 1 is preferred

	0.5 if the payoffs are equal

	1 if act 2 is preferred

	Return type:

	float[#45]

	
godfreysmith2013communication.calculate_C(state_chances, sender_payoff_matrix, receiver_payoff_matrix) → float[#46]

	Calculate C as per Godfrey-Smith and Martínez’s definition.

See page 2 of the supporting information at
https://doi.org/10.1371/journal.pcbi.1003282.s001

	Returns:

	c – PGS & MM’s measure C.

	Return type:

	float[#47]

	
godfreysmith2013communication.calculate_Ks_and_Kr(sender_payoff_matrix, receiver_payoff_matrix)

	Calculate the extent to which an agent’s preference ordering
over receiver actions varies with the state of the world.

Defined as K_S and K_R in the supplement of Godfrey-Smith and Martínez (2013), page 2.

	Parameters:

	payoff_matrix (array-like) – The agent’s payoff matrix.

	Returns:

	K

	Return type:

	float[#48]

	
godfreysmith2013communication.find_games_3x3(games_per_c=1500, c_values=array([0., 0.1111, 0.2222, 0.3333, 0.4444, 0.5556, 0.6667, 0.7778, 0.8889, 1.]), dir_games='../data/') → None[#49]

	Finds games_per_c 3x3 sender and receiver matrices
and saves them as JSON files, storing them by C value in dir_games.

Since it’s hard to find games for certain values of C, we’ll save each
JSON file individually once we’ve found it.
Then if you have to terminate early, you can come back and just search for
games with the values of C you need later on.

	Parameters:

	
	dir_games (str[#50]) – Directory to place JSON files

	games_per_c (int[#51], optional) – Number of games to find per value of c. The default is 1500.

	c_values (array-like) – List of C values to find games for.
The default is the global variable c_3x3_equiprobable.

	Return type:

	None.

	
godfreysmith2013communication.analyse_games_3x3(games_per_c=1500, c_values=array([0., 0.1111, 0.2222, 0.3333, 0.4444, 0.5556, 0.6667, 0.7778, 0.8889, 1.]), dir_games='../data/', sigfig=5) → None[#52]

	Find information-using equilibria of 3x3 games
and the mutual information between states and acts at those equilibria.

The games should already exist in dir_games with filenames of the form:

f"{dir_games}games_c{c_value:.3f}_n{games_per_c}.json"

Each file should be a list of dicts. Each dict corresponds to a game:

{
"s": <sender payoff matrix>
"r": <receiver payoff matrix>
"e": <equilibrium with the highest information transmission>
"i": <mutual information between states and acts at this equilibrium>
}

s and r already exist; this function fills in e and i.

	Parameters:

	
	dir_games (str[#53]) – Directory to find and store JSON files

	games_per_c (int[#54], optional) – Number of games to find per value of c. The default is 1500.

	c_values (array-like) – List of C values to find games for.
The default is the global variable c_3x3_equiprobable.

	sigfig (int[#55], optional.) – The number of significant figures to report values in.
Since gambit sometimes has problems rounding, it generates values like 0.9999999999996.
We want to report these as 1.0000, especially if we’re dumping to a file.
The default is 5.

	
godfreysmith2013communication.find_games_3x3_c_and_k(games_per_c_and_k=1500, sender=True, c_values=array([0., 0.1111, 0.2222, 0.3333, 0.4444, 0.5556, 0.6667, 0.7778, 0.8889, 1.]), k_values=array([0., 0.3333, 0.6667, 1., 1.3333, 1.6667, 2.]), dir_games='../data/') → None[#56]

	Finds games_per_c_and_k 3x3 sender and receiver matrices
and saves them as JSON files, storing them by C and K values in dir_games.

Note that it is EXTREMELY difficult to find games for some combinations
of C and K, especially when C=0.
Expect this to take a long time!

Since it’s hard to find games for certain combinations of C and K, we’ll save each
JSON file individually once we’ve found it.
Then if you have to terminate early, you can come back and just search for
games with the combinations of C and K you need later on.

	Parameters:

	
	games_per_c_and_k (int[#57], optional) – Number of games to find per pair of c and k. The default is 1500.

	sender (bool[#58]) – If True, the operative value of K is the sender’s K_S
If False, the operative value of K is the receiver’s K_R

	c_values (array-like) – List of C values to find games for.
The default is the global variable c_3x3_equiprobable.

	k_values (array-like) – List of K values to find games for.
The default is the global variable k_3x3.

	dir_games (str[#59]) – Directory to place JSON files

	
godfreysmith2013communication.analyse_games_3x3_c_and_k(games_per_c_and_k=1500, sender=True, c_values=array([0., 0.1111, 0.2222, 0.3333, 0.4444, 0.5556, 0.6667, 0.7778, 0.8889, 1.]), k_values=array([0., 0.3333, 0.6667, 1., 1.3333, 1.6667, 2.]), dir_games='../data/', sigfig=5) → None[#60]

	Find information-using equilibria of 3x3 games
and the mutual information between states and acts at those equilibria.

The games should already exist in dir_games with filenames of the form:

f"{dir_games}games_c{c_value:.3f}_{ks or kr}{k_value:.3f}_n{games_per_c}.json"

Each file should be a list of dicts. Each dict corresponds to a game:

{
"s": <sender payoff matrix>
"r": <receiver payoff matrix>
"e": <equilibrium with the highest information transmission>
"i": <mutual information between states and acts at this equilibrium>
}

s and r already exist; this function fills in e and i.

	Parameters:

	
	games_per_c_and_k (int[#61], optional) – Number of games to analyse per pair of c and k. The default is 1500.

	sender (bool[#62]) – If True, the operative value of K is the sender’s K_S
If False, the operative value of K is the receiver’s K_R

	c_values (array-like) – List of C values to analyse games for.
The default is the global variable c_3x3_equiprobable.

	k_values (array-like) – List of K values to analyse games for.
The default is the global variable k_3x3.

	dir_games (str[#63]) – Directory to find and update JSON files

	sigfig (int[#64], optional.) – The number of significant figures to report values in.
Since gambit sometimes has problems rounding, it generates values like 0.9999999999996.
We want to report these as 1.0000, especially if we’re dumping to a file.
The default is 5.

	
godfreysmith2013communication.get_random_payoffs(states=3, acts=3, min_payoff=0, max_payoff=100)

	Generate a random payoff matrix.

	Parameters:

	
	states (int[#65], optional) – Number of states observable by the sender. The default is 3.

	acts (int[#66], optional.) – Number of acts available to the receiver.

	min_payoff (int[#67], optional) – Smallest possible payoff. The default is 0.

	max_payoff (int[#68], optional) – Largest possible payoff. The default is 100.

	Returns:

	payoffs – A random payoff matrix of shape (states,acts).

	Return type:

	array-like

Footnotes

[#1]
https://docs.python.org/3/library/constants.html#None

[#2]
https://docs.python.org/3/library/constants.html#None

[#3]
https://docs.python.org/3/library/constants.html#None

[#4]
https://docs.python.org/3/library/functions.html#int

[#5]
https://docs.python.org/3/library/constants.html#None

[#6]
https://docs.python.org/3/library/functions.html#int

[#7]
https://docs.python.org/3/library/constants.html#None

[#8]
https://docs.python.org/3/library/constants.html#None

[#9]
https://docs.python.org/3/library/stdtypes.html#list

[#10]
https://docs.python.org/3/library/constants.html#None

[#11]
https://docs.python.org/3/library/functions.html#int

[#12]
https://docs.python.org/3/library/constants.html#None

[#13]
https://docs.python.org/3/library/constants.html#None

[#14]
https://docs.python.org/3/library/constants.html#None

[#15]
https://docs.python.org/3/library/functions.html#int

[#16]
https://docs.python.org/3/library/functions.html#int

[#17]
https://docs.python.org/3/library/constants.html#None

[#18]
https://docs.python.org/3/library/constants.html#None

[#19]
https://docs.python.org/3/library/functions.html#int

[#20]
https://docs.python.org/3/library/functions.html#int

[#21]
https://docs.python.org/3/library/constants.html#None

[#22]
https://docs.python.org/3/library/constants.html#None

[#23]
https://docs.python.org/3/library/functions.html#int

[#24]
https://docs.python.org/3/library/functions.html#int

[#25]
https://docs.python.org/3/library/constants.html#None

[#26]
https://docs.python.org/3/library/stdtypes.html#str

[#27]
https://docs.python.org/3/library/functions.html#int

[#28]
https://docs.python.org/3/library/constants.html#None

[#29]
https://docs.python.org/3/library/functions.html#int

[#30]
https://docs.python.org/3/library/constants.html#None

[#31]
https://docs.python.org/3/library/constants.html#None

[#32]
https://docs.python.org/3/library/stdtypes.html#str

[#33]
https://docs.python.org/3/library/functions.html#int

[#34]
https://docs.python.org/3/library/constants.html#None

[#35]
https://docs.python.org/3/library/functions.html#int

[#36]
https://docs.python.org/3/library/constants.html#None

[#37]
https://docs.python.org/3/library/functions.html#int

[#38]
https://docs.python.org/3/library/constants.html#None

[#39]
https://docs.python.org/3/library/stdtypes.html#str

[#40]
https://docs.python.org/3/library/constants.html#None

[#41]
https://docs.python.org/3/library/functions.html#float

[#42]
https://docs.python.org/3/library/functions.html#int

[#43]
https://docs.python.org/3/library/functions.html#int

[#44]
https://docs.python.org/3/library/functions.html#int

[#45]
https://docs.python.org/3/library/functions.html#float

[#46]
https://docs.python.org/3/library/functions.html#float

[#47]
https://docs.python.org/3/library/functions.html#float

[#48]
https://docs.python.org/3/library/functions.html#float

[#49]
https://docs.python.org/3/library/constants.html#None

[#50]
https://docs.python.org/3/library/stdtypes.html#str

[#51]
https://docs.python.org/3/library/functions.html#int

[#52]
https://docs.python.org/3/library/constants.html#None

[#53]
https://docs.python.org/3/library/stdtypes.html#str

[#54]
https://docs.python.org/3/library/functions.html#int

[#55]
https://docs.python.org/3/library/functions.html#int

[#56]
https://docs.python.org/3/library/constants.html#None

[#57]
https://docs.python.org/3/library/functions.html#int

[#58]
https://docs.python.org/3/library/functions.html#bool

[#59]
https://docs.python.org/3/library/stdtypes.html#str

[#60]
https://docs.python.org/3/library/constants.html#None

[#61]
https://docs.python.org/3/library/functions.html#int

[#62]
https://docs.python.org/3/library/functions.html#bool

[#63]
https://docs.python.org/3/library/stdtypes.html#str

[#64]
https://docs.python.org/3/library/functions.html#int

[#65]
https://docs.python.org/3/library/functions.html#int

[#66]
https://docs.python.org/3/library/functions.html#int

[#67]
https://docs.python.org/3/library/functions.html#int

[#68]
https://docs.python.org/3/library/functions.html#int

Full API

Figure objects figure.py

Figure objects.

	Figures can be plotted by calling an instance of the relevant class,
	e.g. f = Skyrms2010_3_3() will create a figure object and simultaneously plot it.

	
class figure.Figure(evo=None, game=None, **kwargs)

	Abstract superclass for all figures.

	
abstract show()

	Show the plot of the figure with the current parameters, typically with plt.show().

This is an abstract method that must be redefined for each subclass.

	Return type:

	None.

	
abstract reset()

	Reset parameters for the figure.

This is an abstract method that must be redefined for each subclass.

	Return type:

	None.

	
classmethod demo_warning()

	Warn the user that they are running in demo mode.

	Return type:

	None.

	
property properties

	Get a dict of all the editable properties of the figure, with their current values.

Typically includes properties like plot color, axis labels, plot scale etc.

	Returns:

	list_of_properties – A list of the editable properties of the object.

	Return type:

	list[#1]

	
class figure.Scatter(**kwargs)

	Superclass for scatter plots

	
reset(x, y, xlabel, ylabel, marker_size=10, marker_color='k', xlim=None, ylim=None, xscale=None, yscale=None)

	Update figure parameters, which can then be plotted with self.show().

	Parameters:

	
	x (array-like) – x-axis coordinates.

	y (array-like) – y-axis coordinates.

	xlabel (str[#2]) – x-axis label.

	ylabel (str[#3]) – y-axis label.

	marker_size (int[#4], optional) – Size of the markers for each data point. The default is 10.

	marker_color (str[#5], optional) – Color of the datapoint markers. The default is “k”.

	xlim (array-like, optional) – Minimum and maximum values of x-axis. The default is None.

	ylim (array-like, optional) – Minimum and maximum values of y-axis. The default is None.

	xscale (str[#6], optional) – x-axis scaling i.e. linear or logarithmic. The default is None.

	yscale (str[#7], optional) – y-axis scaling i.e. linear or logarithmic. The default is None.

	Return type:

	None.

	
show()

	Show figure with the current parameters.

	Parameters:

	line (bool[#8], optional) – Whether to show a line connecting the datapoints.
The default is False.

	Return type:

	None.

	
property marker_size

	Marker color

	
property marker_color

	Line connecting the markers

	
class figure.Quiver(**kwargs)

	Superclass for Quiver plots

	
class figure.Quiver2D(scale=20, **kwargs)

	Plot a 2D quiver plot.

	
reset(color=None, xlabel=None, ylabel=None)

	Reset parameters for the figure.

This is an abstract method that must be redefined for each subclass.

	Return type:

	None.

	
show()

	Display the 2D quiver plot with the loaded data.

	Raises:

	NoDataException – The requisite data has not been supplied by the user.

	Return type:

	None.

	
uv_from_xy(x, y)

	
	Parameters:

	
	x (float[#9]) – Current proportion of the first sender strategy.

	y (float[#10]) – Current proportion of the first receiver strategy.

	Returns –

	strategy. (velocity of SECOND receiver) –

	strategy. –

	
class figure.Quiver3D(color='k', normalize=True, length=0.5, arrow_length_ratio=0.5, pivot='middle', **kwargs)

	Plot a 3D quiver plot.

	
reset()

	Reset parameters for the figure.

This is an abstract method that must be redefined for each subclass.

	Return type:

	None.

	
show()

	Display the 3D quiver plot with the loaded data.

	Raises:

	NoDataException – The requisite data has not been supplied.

	Return type:

	None.

	
vector_to_barycentric(vector)

	Convert a 4d vector location to its equivalent within a tetrahedron

	Parameters:

	vector (TYPE) – DESCRIPTION.

	Returns:

	barycentric_location – DESCRIPTION.

	Return type:

	TYPE

	
class figure.Bar(**kwargs)

	Bar chart abstract superclass.

	
reset(x, y, xlabel, ylabel, bar_color='w', xlim=None, ylim=None, yscale=None)

	Update figure parameters

	Parameters:

	
	x (array-like) – x-axis coordinates.

	y (array-like) – y-axis coordinates.

	Return type:

	None.

	
show()

	Display the bar chart with the loaded data.

	Raises:

	NoDataException – The requisite data has not been supplied.
 Bar charts need x-axis values and y-axis values.

	Return type:

	None.

	
class figure.Ternary(**kwargs)

	Superclass for ternary (2-simplex) plots

	
reset(right_corner_label, top_corner_label, left_corner_label, fontsize)

	Reset parameters for the figure.

This is an abstract method that must be redefined for each subclass.

	Return type:

	None.

	
show()

	Display the ternary plot with the loaded data.

	Raises:

	NoDataException – The requisite data was not supplied.
 Ternary plots require an <xyzs> attribute.

	Return type:

	None.

	
class figure.Surface(**kwargs)

	Superclass for 3D surface plots (e.g. colormap).
Uses ax.plot_surface().

	
reset(x=None, y=None, z=None, xlabel=None, ylabel=None, zlabel=None, xlim=None, ylim=None, zlim=None, cmap=<matplotlib.colors.LinearSegmentedColormap object>, linewidth=1, antialiased=False, elev=25.0, azim=245, dist=12) → None[#11]

	Update figure parameters, which can then be plotted with self.show().

	Parameters:

	
	x (array-like) – x-axis values.

	y (array-like) – y-axis values.

	z (array-like) – z-axis values.

	xlim (array-like, optional) – Minimum and maximum values of x-axis. The default is None.

	ylim (array-like, optional) – Minimum and maximum values of y-axis. The default is None.

	zlim (array-like, optional) – Minimum and maximum values of z-axis. The default is None.

	cmap (matplotlib.colors.LinearSegmentedColormap, optional) – Color mapping. The default is cm.coolwarm.

	linewidth (float[#12](?) or int[#13], optional) – Width of the lines in the surface. The default is 1.

	antialiased (bool[#14], optional) – Whether the figure is antialiased. The default is False.

	elev (float[#15]) – camera elevation

	azim (int[#16]) – camera azimuth

	dist (int[#17]) – camera distance

	Return type:

	None.

	
show() → None[#18]

	Show figure with current parameters.

	Return type:

	None.

Evolve objects evolve.py

Calculate equations to evolve populations in a game. Right now, we can
calculate the replicator (-mutator) dynamics, with one or two populations, in
discrete or continuous time

	
class evolve.OnePop(game, playertypes)

	Calculate the equations necessary to evolve one population. It takes as
input a <game> and an array such that the <i,j> cell gives the expected
payoff for the-strategist player of an encounter in which they follow
strategy i and their opponent follows strategy j.

	
random_player()

	Return frequencies of a random sender population

	
avg_payoff(player)

	Return the average payoff that players get when the population vector
is <player>

	
avg_payoff_vector(player)

	Get expected payoffs of every type when population vector is <player>.

Depends on assortment.

p(s_i meets s_i) = p(s_i) + self.e * (1-p(s_i))
p(s_i meets s_j) = p(s_j) - self.e * p(s_j)

	Parameters:

	player (TYPE) – DESCRIPTION.

	Return type:

	None.

	
replicator_dX_dt_odeint(X, t)

	Calculate the rhs of the system of odes for scipy.integrate.odeint

	
replicator_jacobian_odeint(X, t=0)

	Calculate the Jacobian of the system of odes for scipy.integrate.odeint

	
discrete_replicator_delta_X(X)

	Calculate a population vector for t’ given the vector for t, using the
discrete time replicator dynamics (Huttegger 2007)

	
replicator_odeint(init, time_vector, **kwargs)

	Calculate one run of the game following the replicator(-mutator)
dynamics, with starting points sinit and rinit, in times <times> (an
evolve.Times instance), using scipy.integrate.odeint

	
replicator_discrete(initpop, steps)

	Calculate one run of the game, following the discrete
replicator(-mutator) dynamics, for <steps> steps with
starting population vector <initpop> using the discrete time
replicator dynamics.

	
pop_to_mixed_strat(pop)

	Take a population vector and output the average strat implemented by
the whole population

	
assortment(e)

	Set assortment level

	Parameters:

	e (TYPE) – DESCRIPTION.

	Return type:

	None.

	
class evolve.TwoPops(game, sendertypes, receivertypes)

	Calculate the equations necessary to evolve a population of senders and one
of receivers. It takes as input a <game>, (which as of now only can be a
Chance object), and a tuple: the first (second) member of the tuple is a
nxm array such that the <i,j> cell gives the expected payoff for the sender
(receiver) of an encounter in which the sender follows strategy i and the
receiver follows strategy j.

	
random_sender()

	Return frequencies of a random sender population

	
random_receiver()

	Return frequencies of a random receiver population

	
sender_avg_payoff(sender, receiver)

	Return the average payoff that senders get when the population vectors
are <sender> and <receiver>

	
receiver_avg_payoff(receiver, sender)

	Return the average payoff that receivers get when the population
vectors are <sender> and <receiver>

	
replicator_dX_dt_odeint(X, t)

	Calculate the rhs of the system of odes for scipy.integrate.odeint

	
replicator_dX_dt_ode(t, X)

	Calculate the rhs of the system of odes for scipy.integrate.ode

	
replicator_jacobian_odeint(X, t=0)

	Calculate the Jacobian of the system for scipy.integrate.odeint

	
replicator_jacobian_ode(t, X)

	Calculate the Jacobian of the system for scipy.integrate.ode

	
discrete_replicator_delta_X(X)

	Calculate a population vector for t’ given the vector for t, using the
discrete time replicator dynamics (Huttegger 2007)

	
replicator_odeint(sinit, rinit, times, **kwargs)

	Calculate one run of the game following the replicator(-mutator)
dynamics, with starting points sinit and rinit, in times <times> (an
evolve.Times instance), using scipy.integrate.odeint

	
replicator_ode(sinit, rinit, times, integrator='dopri5')

	Calculate one run of the game, following the replicator(-mutator)
dynamics in continuous time, in <times> (an evolve.Times instance) with
starting points sinit and rinit using scipy.integrate.ode

	
replicator_discrete(sinit, rinit, times)

	Calculate one run of the game, following the discrete
replicator(-mutator) dynamics, in <times> (an evolve.Times object) with
starting population vector <popvector> using the discrete time
replicator dynamics. Note that this solver will just calculate n points
in the evolution of the population, and will not try to match them to
the times as provided.

	
vector_to_populations(vector)

	Take one of the population vectors returned by the solvers, and output
two vectors, for the sender and receiver populations respectively.

	
sender_to_mixed_strat(senderpop)

	Take a sender population vector and output the average
sender strat implemented by the whole population

	
receiver_to_mixed_strat(receiverpop)

	Take a receiver population vector and output the average
receiver strat implemented by the whole population

	
class evolve.Reinforcement(game, agents)

	Evolving finite sets of agents by reinforcement learning.

	
reset()

	Initialise values and agents.

	Return type:

	None.

	
run(iterations, hide_progress=True, calculate_stats='step')

	Run the simulation for <iterations> steps.

	Parameters:

	
	iterations (int[#19]) – Number of times to call self.step().

	hide_progress (bool[#20]) – Whether to display tqdm progress bar

	calculate_stats (str[#21]) – When to calculate stats
“step”: every step
“end”: only at the last step

	Return type:

	None.

	
is_pooling(epsilon=0.001)

	Determine whether the current strategies are pooling or
a signalling system.

If the mutual information between states and acts at the current
population state is within <epsilon> of the maximum possible,
it’s a signalling system.
Otherwise, it’s pooling.

Clearly if the number of signals is lower than both the number of states
and the number of acts, it will necessarily be pooling.

	Parameters:

	epsilon (float[#22]) – How close to the maximum possible mutual information must
the current mutual information be in order to count
as a signalling system?

	Returns:

	pooling – True if the current strategies constitute a pooling equilibrium.

	Return type:

	bool[#23]

	
class evolve.Matching(game, agents)

	Reinforcement according to Richard Herrnstein’s matching law.
The probability of choosing an action is proportional to its accumulated rewards.

	
class evolve.MatchingSR(game, sender_strategies, receiver_strategies)

	Matching simulation for two-player sender-receiver game.

	
step(calculate_stats=True)

	Implement the matching rule and increment one step.

	In each step:
	
	Run one round of the game.

	Update the agents’ strategies based on the payoffs they received.

	Calculate and store any required variables e.g. information.

	Update iteration.

	Return type:

	None.

	
calculate_stats()

	Calculate and store informational quantities at this point.

	Return type:

	None.

	
class evolve.MatchingSRInvention(game, sender_strategies, receiver_strategies)

	
	Matching simulation for two-player sender-receiver game,
	with the possibility of new signals at every step.

	
step(calculate_stats=True)

	Implement the matching rule and increment one step.

	In each step:
	
	Run one round of the game.

	Update the agents’ strategies based on the payoffs they received.

	Calculate and store any required variables e.g. information.

	Update iteration.

	Return type:

	None.

	
calculate_stats()

	Calculate and store informational quantities at this point.

	Return type:

	None.

	
class evolve.MatchingSIR(game, sender_strategies, intermediary_strategies, receiver_strategies)

	Reinforcement game for sender, intermediary, receiver.

	
step(calculate_stats=True)

	Implement the matching rule and increment one step.

	In each step:
	
	Run one round of the game.

	Update the agents’ strategies based on the payoffs they received.

	Calculate and store any required variables e.g. probability of success.

	Update iteration.

	Return type:

	None.

	
record_probability_of_success()

	For now, just store “probability of success.”

	Return type:

	None.

	
class evolve.BushMostellerSR(game, sender_strategies, receiver_strategies, learning_parameter)

	Bush_mosteller reinforcement simulation for two-player sender-receiver game.

	
step(calculate_stats=True)

	Implement the matching rule and increment one step.

	In each step:
	
	Run one round of the game.

	Update the agents’ strategies based on the payoffs they received.

	Calculate and store any required variables e.g. information.

	Update iteration.

	Return type:

	None.

	
calculate_stats()

	Calculate and store informational quantities at this point.

	Return type:

	None.

	
class evolve.Agent(strategies)

	Finite, discrete agent used in Reinforcement() objects.

	
choose_strategy(input_data)

	Sample from self.strategies[input_data] to get a concrete response.

	When the strategies are simply a matrix,
	with each row defining a distribution over possible responses,
<input_data> is an integer indexing a row of the array.

	So we choose that row and choose randomly from it,
	according to the conditional probabilities of the responses,
which are themselves listed as entries in each row.

	E.g. if this is a sender, <input_data> is the index of the current state of the world,
	and the possible responses are the possible signals.

	If this is a receiver, <input_data> is the index of the signal sent,
	and the possible responses are the possible acts.

	Returns:

	response – The index of the agent’s response.

	Return type:

	int.

	
update_strategies(input_data, response, payoff)

	
	The agent has just played <response> in response to <input_data>,
	and received <payoff> as a result.

	They now update the probability of choosing that response for
	that input data, proportionally to <payoff>.

	Parameters:

	
	input_data (TYPE) – DESCRIPTION.

	response (TYPE) – DESCRIPTION.

	payoff (TYPE) – DESCRIPTION.

	Return type:

	None.

	
update_strategies_bush_mosteller(input_data, response, payoff, learning_parameter)

	From Skyrms 2010 page 86:

	“If an act is chosen and a reward is gotten
	the probability is incremented by adding some fraction of the
distance between the original probability and probability one.
Alternative action probabilities are decremented so that everything
adds to one. The fraction used is the product of the reward and
some learning parameter.”

	Parameters:

	
	input_data (TYPE) – DESCRIPTION.

	response (TYPE) – DESCRIPTION.

	payoff (TYPE) – DESCRIPTION.

	learning_parameter (TYPE) – DESCRIPTION.

	Return type:

	None.

	
add_signal_sender()

	TODO: consolidate with add_signal_receiver(), and tell the agent who it is

	Return type:

	None.

	
add_signal_receiver()

	TODO: consolidate with add_signal_sender(), and tell the agent who it is

	Return type:

	None.

	
class evolve.Times(initial_time, final_time, time_inc)

	Provides a way of having a single time input to both odeint and ode

	
evolve.mutationmatrix(mutation, dimension)

	Calculate a (square) mutation matrix with mutation rate
given by <mutation> and dimension given by <dimension>

Game objects games.py

Set up an asymmetric evolutionary game, that can be then fed to the evolve
module. There are two main classes here:

	Chance: Games with a chance player

	NonChance: Games without a chance player

	
class games.Chance(state_chances, sender_payoff_matrix, receiver_payoff_matrix, messages)

	Construct a payoff function for a game with a chance player, that chooses a
state, among m possible ones; a sender that chooses a message, among n
possible ones; a receiver that chooses an act among o possible ones; and
the number of messages

	
choose_state()

	Return a random state, relying on the probabilities given by self.state_chances

	
sender_payoff(state, act)

	Return the sender payoff for a combination of <state> and <act>

	
receiver_payoff(state, act)

	Return the receiver payoff for a combination of <state> and <act>

	
sender_pure_strats()

	Return the set of pure strategies available to the sender

	
receiver_pure_strats()

	Return the set of pure strategies available to the receiver

	
one_pop_pure_strats()

	Return the set of pure strategies available to players in a
one-population setup

	
payoff(sender_strat, receiver_strat)

	Calculate the average payoff for sender and receiver given concrete
sender and receiver strats

	
avg_payoffs(sender_strats, receiver_strats)

	Return an array with the average payoff of sender strat i against
receiver strat j in position <i, j>

	
create_gambit_game()

	Create a gambit object based on this game.

[SFM: UPDATE: this method has changed significantly
to comply with pygambit 16.1.0.
Original note: For guidance creating this method I followed the tutorial at
https://nbviewer.org/github/gambitproject/gambit/blob/master/contrib/samples/sendrecv.ipynb
and adapted as appropriate.]

	Returns:

	g

	Return type:

	Game() object from pygambit package.

	
property has_info_using_equilibrium: bool[#24]

	Does this game have an information-using equilibrium?

	Parameters:

	sigfig (int[#25], optional) – The number of significant figures to report values in.
Since gambit sometimes has problems rounding, it generates values like 0.9999999999996.
We want to report these as 1.0000, especially if we’re dumping to a file.
The default is 5.

	Returns:

	If True, the game has at least one information-using equilibrium.
If False, the game does not have an information-using equilibrium.

	Return type:

	bool[#26]

	
property highest_info_using_equilibrium: tuple[#27]

	Get the mutual information between states and acts at the
equilibrium with the highest such value.
Also get the strategies at this equilibrium

Note that if the game has no information-using equilibria,
the value of mutual information will be 0.
The strategies returned will then be an arbitrary equilibrium.

	Parameters:

	sigfig (int[#28], optional) – The number of significant figures to report values in.
Since gambit sometimes has problems rounding, it generates values like 0.9999999999996.
We want to report these as 1.0000, especially if we’re dumping to a file.
The default is 5.

	Returns:

	First element is a list containing the highest-info-using sender and receiver strategies.
Second element is the mutual information between states and acts given these strategies.

	Return type:

	tuple[#29]

	
property max_mutual_info

	Maximum possible mutual information between states and acts.
Depends on self.state_chances.

Lazy instantiation

	Returns:

	_max_mutual_info – The maximum mutual information between states and acts for this game.

	Return type:

	float[#30]

	
class games.ChanceSIR(state_chances=array([0.5, 0.5]), sender_payoff_matrix=array([[1., 0.], [0., 1.]]), intermediary_payoff_matrix=array([[1., 0.], [0., 1.]]), receiver_payoff_matrix=array([[1., 0.], [0., 1.]]), messages_sender=2, messages_intermediary=2)

	A sender-intermediary-receiver game with Nature choosing the state.

	
choose_state()

	Randomly get a state according to self.state_chances

	Returns:

	state – Index of the chosen state.

	Return type:

	int[#31]

	
payoff_sender(state, act)

	Get the sender’s payoff when this combination of state and act occurs.

	Parameters:

	
	state (TYPE) – DESCRIPTION.

	act (TYPE) – DESCRIPTION.

	Returns:

	payoff – DESCRIPTION.

	Return type:

	TYPE

	
payoff_intermediary(state, act)

	Get the intermediary’s payoff when this combination of state and act occurs.

	Parameters:

	
	state (TYPE) – DESCRIPTION.

	act (TYPE) – DESCRIPTION.

	Returns:

	payoff – DESCRIPTION.

	Return type:

	TYPE

	
payoff_receiver(state, act)

	Get the receiver’s payoff when this combination of state and act occurs.

	Parameters:

	
	state (TYPE) – DESCRIPTION.

	act (TYPE) – DESCRIPTION.

	Returns:

	payoff – DESCRIPTION.

	Return type:

	TYPE

	
avg_payoffs_regular(snorm, inorm, rnorm)

	Return the average payoff of all players given these strategy profiles.

Requires game to be regular.

	Parameters:

	
	snorm (array-like) – Sender’s strategy profile, normalised.

	inorm (array-like) – Intermediary player’s strategy profile, normalised.

	rnorm (array-like) – Receiver’s strategy profile, normalised.

	Returns:

	payoff – The average payoff given these strategies.
The payoff is the same for every player.

	Return type:

	float[#32]

	
class games.NonChance(sender_payoff_matrix, receiver_payoff_matrix, messages)

	Construct a payoff function for a game without chance player: a sender that
chooses a message, among n possible ones; a receiver that chooses an act
among o possible ones; and the number of messages

	
sender_pure_strats()

	Return the set of pure strategies available to the sender. For this
sort of games, a strategy is a tuple of vector with probability 1 for
the sender’s state, and an mxn matrix in which the only nonzero row
is the one that correspond’s to the sender’s type.

	
receiver_pure_strats()

	Return the set of pure strategies available to the receiver

	
payoff(sender_strat, receiver_strat)

	Calculate the average payoff for sender and receiver given concrete
sender and receiver strats

	
avg_payoffs(sender_strats, receiver_strats)

	Return an array with the average payoff of sender strat i against
receiver strat j in position <i, j>

	
create_gambit_game()

	Create a gambit object based on this game.

[SFM: UPDATE: this method has changed significantly
to comply with pygambit 16.1.0.
Original note: For guidance creating this method I followed the tutorial at
https://nbviewer.org/github/gambitproject/gambit/blob/master/contrib/samples/sendrecv.ipynb
and adapted as appropriate.]

	Returns:

	g

	Return type:

	Game() object from pygambit package.

	
class games.NoSignal(payoff_matrix)

	Construct a payoff function for a game without chance player: and in which
no one signals. Both players have the same payoff matrix

	
pure_strats()

	Return the set of pure strategies available to the players. For this
sort of games, a strategy is a probablity vector over the set of states

	
payoff(first_player, second_player)

	Calculate the average payoff for first and second given concrete
strats

	
avg_payoffs(player_strats)

	Return an array with the average payoff of strat i against
strat j in position <i, j>

	
games.lewis_square(n=2)

	Factory method to produce a cooperative nxnxn signalling game
(what Skyrms calls a “Lewis signalling game”).

	Returns:

	game – A nxnxn cooperative signalling game.

	Return type:

	Chance object.

	
games.gambit_example(n=2, export=False, fpath='tester.efg')

	
	Create the gambit representation of a cooperative nxnxn game
	and compute its Nash equilibria.

	Optionally output as an extensive-form game, which can be
	loaded into the Gambit GUI.

	Return type:

	None.

Calculations calculate.py

Solve large batches of games. There are a bunch of idyosincratic functions
here. This module is mostly for illustration of use cases.

	
calculate.one_basin_discrete(game, trials, times)

	Calculate evolutions for <trials> starting points of <game> (which is an
instance of game.Evolve), in <times> (an instance of game.Times)

	
calculate.one_basin_discrete_aux(triple)

	Calculate the one_basin loop using replicator_discrete

	
calculate.one_basin_mixed(game, trials, times)

	Calculate evolutions for <trials> starting points of <game> (which is an
instance of game.Evolve), in <times> (an instance of game.Times)

	
calculate.one_basin_aux_mixed(triple, print_trials=True)

	Calculate the one_basin loop. First lsoda, then dopri5 if error

	
calculate.one_basin_aux(triple)

	Calculate the one_basin loop using replicator_odeint

	
calculate.one_basin_ode_aux(triple)

	Calculate the one_basin loop using one_run_ode

	
calculate.one_batch(fileinput, directory, alreadydone='')

	Take all games in <fileinput> and calculate one_basin on each. Save in
<directory>

	
calculate.pop_vector(vector)

	Test if <vector> is a population vector: sums a total of 2, and every value
is larger or equal than zero

	
calculate.test_endstate(array)

	Test if <array> is composed by two concatenated probability vectors

Calculations relating to common interest common_interest.py

Analyses of common interest

	
class common_interest.CommonInterest_1_pop(game)

	Calculate quantities useful for the study of the degree of common interest
between senders and receivers

	
K(array)

	Calculate K as defined in Godfrey-Smith and Martinez (2013) – but
using scipy.stats.kendalltau

	
sender_K()

	Calculate K for the sender

	
receiver_K()

	Calculate K for the receiver

	
C_chance()

	Calculate C as defined in Godfrey-Smith and Martinez (2013) – but
using scipy.stats.kendalltau

	
C_nonchance()

	Calculate the C for non-chance games (using the total KTD)

	
class common_interest.CommonInterest_2_pops(game)

	Calculate quantities useful for the study of the degree of common interest
between senders and receivers

	
K(array)

	Calculate K as defined in Godfrey-Smith and Martinez (2013) – but
using scipy.stats.kendalltau

	
sender_K()

	Calculate K for the sender

	
receiver_K()

	Calculate K for the receiver

	
C_chance()

	Calculate C as defined in Godfrey-Smith and Martinez (2013) – but
using scipy.stats.kendalltau

	
C_nonchance()

	Calculate the C for non-chance games (using the total KTD)

	
common_interest.C(vector1, vector2)

	Calculate C for two vectors

	
common_interest.tau(vector1, vector2)

	Calculate the Kendall tau statistic among two vectors

	
common_interest.intra_tau(unconds, array)

	Calculate the average (weighted by <unconds> of the pairwise Kendall’s tau
distance between rows (states) of <array>

	
common_interest.total_tau(array1, array2)

	Calculate the KTD between the flattened <array1> and <array2>. Useful for
NonChance games

	
common_interest.tau_per_rows(unconds, array1, array2)

	Calculate the average (weighted by <unconds> of the Kendall’s tau distance
between the corresponding rows (states) of <array1> and <array2>

	
class common_interest.Nash(game)

	Calculate Nash equilibria

	
is_Nash(sender, receiver)

	Find out if sender and receiver are a Nash eqb

	
common_interest.stability(array)

	Compute a coarse grained measure of the stability of the array

	
common_interest.stable_vector(vector)

	Return true if the vector does not move

	
common_interest.periodic_vector(vector)

	We take the FFT of a vector, and eliminate all components but the two main
ones (i.e., the static and biggest sine amplitude) and compare the
reconstructed wave with the original. Return true if close enough

Calculations relating to information theory info.py

Information-theoretic analyses

	
class info.Information(game, sender, receiver)

	Calculate information-theoretic quantities between strats. It expects a
game, as created by game.Chance or game.NonChance, a sender strategy, and a
receiver strategy

	
mutual_info_states_acts()

	Calculate the mutual info between states and acts

	
mutual_info_states_messages()

	Calculate the mutual info between states and messages

	
mutual_info_messages_acts()

	Calculate the mutual info between messages and acts

	
class info.RDT(game, dist_tensor=None, epsilon=0.001)

	Calculate the rate-distortion function for a game and any number of distortion
measures

	
dist_tensor_from_game()

	Return normalize_distortion() for sender and receiver payoffs

	
blahut(lambda_DUMMY, max_rounds=100, return_cond=False)

	Calculate the point in the R(D, D’) surface with slopes given by
lambda_DUMMY and mu. Follows Cover & Thomas 2006, p. 334

	
update_conditional(lambda_DUMMY, output)

	Calculate a new conditional distribution from the <output> distribution
and the <lambda_DUMMY> parameters. The conditional probability matrix is such that
cond[i, j] corresponds to P(x^_j | x_i)

	
calc_distortion(cond, matrix)

	Calculate the distortion for a given channel (individuated by the
conditional matrix in <cond>), for a certain slice of self.dist_tensor

	
calc_rate(cond, output)

	Calculate the rate for a channel (given by <cond>) and output
distribution (given by <output>)

	
from_cond_to_RD(cond, dist_measures)

	Take a channel matrix, cond, where cond[i, j] gives P(q^[j] | q[i]),
and calculate rate and distortions for it.
<dist_measures> is a list of integers stating which distortion measures
we want.

	
class info.OptimizeRate(game, dist_measures=None, dist_tensor=None, epsilon=0.0001)

	A class to calculate rate-distortion surface with a scipy optimizer

	
make_calc_RD()

	Return a function that calculates an RD (hyper-)surface using the
trust-constr scipy optimizer, for a given list of distortion
objectives.

	
rate(cond_flat)

	Calculate rate for make_calc_RD()

	
cond_init()

	Return an initial conditional matrix

	
gen_lin_constraint(distortions)

	Generate the LinearConstraint object

	Parameters:

	distortions (A list of distortion objectives) –

	
lin_constraint()

	Collate all constraints

	
dist_constraint()

	Present the distortion constraint (which is linear) the way
scipy.optimize expects it

	
prob_constraint()

	Present the constraint that all rows in cond be probability vectors. We
use a COO sparse matrix

	
class info.OptimizeMessages(game, dist_measures=None, dist_tensor=None, epsilon=0.0001)

	A class to calculate number-of-messges/distortion curves with a scipy
optimizer

	
make_calc_MD()

	Return a function that calculates the minimum distortion attainable for
a certain number of messages, using a trust-constr scipy optimizer.
Right now it only works for one distortion measure.
<distortion> is the distortion matrix in <dist_tensor> that we should
care about.

	
distortion(codec_flat, messages, matrix)

	Calculate the distortion for a given channel (individuated by the
conditional matrix in <cond>), for a certain slice of self.dist_tensor

	
codec_init_random(messages)

	Return an initial conditional matrix

	
codec_init(messages)

	Return an initial conditional matrix

	
gen_lin_constraint(messages)

	Generate the LinearConstraint object

	Parameters:

	distortions (A list of distortion objectives) –

	
prob_constraint(messages)

	Present the constraint that all rows in cond be probability vectors. We
use a COO sparse matrix

	
class info.OptimizeMessageEntropy(game, dist_measures=None, dist_tensor=None, messages=None, epsilon=0.0001)

	A class to calculate rate-distortion (where rate is actually the entropy of
messages with a scipy optimizer).

	
make_calc_RD()

	Return a function that calculates an RD (hyper-)surface using the
trust-constr scipy optimizer, for a given list of distortion
objectives.

	
minimize_distortion(matrix)

	Return a function that finds an encoder-decoder pair, with the
requisite dimension, that minimizes a single distortion objective, using a
trust-constr scipy optimizer

	
message_entropy(encode_decode)

	Calculate message entropy given an encoder-decoder pair, where the two
matrices are flattened and then concatenated

	
enc_dec_init()

	Return an initial conditional matrix

	
gen_nonlin_constraint(distortions)

	Generate a list of NonLinearConstraint objects

	Parameters:

	distortions (A list of distortion objectives) –

	
gen_lin_constraint()

	Generate the LinearConstraint object

	Parameters:

	distortions (A list of probability objectives) –

	
gen_dist_func(matrix)

	Return the function that goes into the NonLinearConstraint objects

	
prob_constraint()

	Present the constraint that all rows in encoder and decoder be
probability vectors

	
class info.Shea(game)

	Calculate functional content vectors as presented in Shea, Godfrey-Smith
andand Cao 2017.

	
baseline_payoffs()

	Give a vector with the payoffs for sender, and another for receiver,
when the receiver does the best possible act for it in the absence of any communication.
I will choose, for now, the receiver act that gives the best possible sender payoff
(this is not decided by Shea et al.; see fn.14)

	
expected_for_act(act)

	Calculate the expected payoff for sender and receiver of doing one act,
in the absence of communication

	
normal_payoffs()

	Calculate payoffs minus the baseline

	
calc_dmin()

	Calculate dmin as defined in Shea et al. (2917, p. 24)

	
calc_summation(norm_payoff, receiver_strat)

	Calculate the summation in the entries of the functional content vector

	
calc_entries(sender_strat, receiver_strat, payoff_matrix)

	Calculate the entries of the functional vector, given one choice for
the (baselined) payoff matrix

	
calc_entries_dmin(sender_strat, receiver_strat)

	Calculate the entries of the functional vector, given one choice for
the official dmin

	
calc_entries_sender(sender_strat, receiver_strat)

	Calculate the entries of the functional vector, for the baselined
sender

	
calc_entries_receiver(sender_strat, receiver_strat)

	Calculate the entries of the functional vector, for the baselined
receiver

	
calc_condition(receiver_strat, payoff_matrix, baseline)

	Calculate the condition for nonzero vector entries

	
calc_condition_sender(receiver_strat)

	Calculate condition() for the sender payoff matrix and baseline

	
calc_condition_receiver(receiver_strat)

	Calculate condition() for the receiver payoff matrix and baseline

	
calc_condition_common(receiver_strat)

	Calculate the condition for a nonzero functional vector entry in
the definition in (op. cit., p. 24)

	
functional_content(entries, condition)

	Put everything together in a functional vector per message

	
functional_content_sender(sender_strat, receiver_strat)

	Calculate the functional content from the perspective of the sender

	
functional_content_receiver(sender_strat, receiver_strat)

	Calculate the functional content from the perspective of the receiver

	
functional_content_dmin(sender_strat, receiver_strat)

	Calculate the functional content from the perspective of dmin

	
info.conditional_entropy(conds, unconds)

	Take a matrix of probabilities of the column random variable (r. v.)
conditional on the row r.v.; and a vector of unconditional
probabilities of the row r. v.. Calculate the conditional entropy of
column r. v. on row r. v. That is:
Input:

>>> [[P(B1|A1),, P(Bn|A1)],..., [P(B1|Am),...,P(Bn|Am)]]
>>> [P(A1), ..., P(Am)]

Output:

>>> H(B|A)

	
info.mutual_info_from_joint(matrix)

	Take a matrix of joint probabilities and calculate the mutual information
between the row and column random variables

	
info.unconditional_probabilities(unconditional_input, strategy)

	Calculate the unconditional probability of messages for sender, or
signals for receiver, given the unconditional probability of states
(for sender) or of messages (for receiver)

	
info.normalize_axis(array, axis)

	Normalize a matrix along <axis>, being sensible with all-zero rows

	
info.from_joint_to_conditional(array)

	Normalize row-wise

	
info.from_conditional_to_joint(unconds, conds)

	Take a matrix of conditional probabilities of the column random variable on
the row r. v., and a vector of unconditional probabilities of the row r. v.
and output a matrix of joint probabilities.

Input:
>>> [[P(B1|A1), …., P(Bn|A1)],…, [P(B1|Am),…,P(Bn|Am)]]
>>> [P(A1), …, P(Am)]
Output:
>>> [[P(B1,A1), …., P(Bn,A1)],…, [P(B1,Am),…,P(Bn,Am)]]

	
info.bayes_theorem(unconds, conds)

	Perform Bayes’ theorem on a matrix of conditional probabilities

	Parameters:

	
	unconds (a (n x 1) numpy array of unconditional probabilities [P(A1), ... , P(An)]) –

	conds (a (m x n) numpy array of conditional probabilities [[P(B1|A1), ... , P(Bm|A1)], ... , [P(B1|An), ..., P(Bm|An)]]) –

	Return type:

	A (n x m) numpy array of conditional probabilities [[P(A1|B1), … , P(An|B1)], … , [P(PA1|Bm), … , P(An|Bm)]]

	
info.entropy(vector)

	Calculate the entropy of a vector

	
info.escalar_product_map(matrix, vector)

	Take a matrix and a vector and return a matrix consisting of each element
of the vector multiplied by the corresponding row of the matrix

	
info.normalize_vector(vector)

	Normalize a vector, converting all-zero vectors to uniform ones

	
info.normalize_distortion(matrix)

	Normalize linearly so that max corresponds to 0 distortion, and min to 1 distortion
It must be a matrix of floats!

Exceptions exceptions.py

Some custom exceptions and errors

	
exception exceptions.ChanceNodeError

	Error to raise when the user is attempting to do something with a chance
node that doesn’t exist

	
exception exceptions.NoDataException

	Error to raise when the user tries to show a plot but the figure object
doesn’t have the required data.
Also raised when the user tries to load data from disk that is not found.

	
exception exceptions.InconsistentDataException

	Error to raise when the user provides data that is inconsistent
e.g. payoff matrices that do not have a shape corresponding to
the set of states or set of acts.

	
exception exceptions.ModuleNotInstalledException

	Error to raise when a method requires a module that is not yet installed.

Footnotes

[#1]
https://docs.python.org/3/library/stdtypes.html#list

[#2]
https://docs.python.org/3/library/stdtypes.html#str

[#3]
https://docs.python.org/3/library/stdtypes.html#str

[#4]
https://docs.python.org/3/library/functions.html#int

[#5]
https://docs.python.org/3/library/stdtypes.html#str

[#6]
https://docs.python.org/3/library/stdtypes.html#str

[#7]
https://docs.python.org/3/library/stdtypes.html#str

[#8]
https://docs.python.org/3/library/functions.html#bool

[#9]
https://docs.python.org/3/library/functions.html#float

[#10]
https://docs.python.org/3/library/functions.html#float

[#11]
https://docs.python.org/3/library/constants.html#None

[#12]
https://docs.python.org/3/library/functions.html#float

[#13]
https://docs.python.org/3/library/functions.html#int

[#14]
https://docs.python.org/3/library/functions.html#bool

[#15]
https://docs.python.org/3/library/functions.html#float

[#16]
https://docs.python.org/3/library/functions.html#int

[#17]
https://docs.python.org/3/library/functions.html#int

[#18]
https://docs.python.org/3/library/constants.html#None

[#19]
https://docs.python.org/3/library/functions.html#int

[#20]
https://docs.python.org/3/library/functions.html#bool

[#21]
https://docs.python.org/3/library/stdtypes.html#str

[#22]
https://docs.python.org/3/library/functions.html#float

[#23]
https://docs.python.org/3/library/functions.html#bool

[#24]
https://docs.python.org/3/library/functions.html#bool

[#25]
https://docs.python.org/3/library/functions.html#int

[#26]
https://docs.python.org/3/library/functions.html#bool

[#27]
https://docs.python.org/3/library/stdtypes.html#tuple

[#28]
https://docs.python.org/3/library/functions.html#int

[#29]
https://docs.python.org/3/library/stdtypes.html#tuple

[#30]
https://docs.python.org/3/library/functions.html#float

[#31]
https://docs.python.org/3/library/functions.html#int

[#32]
https://docs.python.org/3/library/functions.html#float

 Python Module Index

 c |
 e |
 f |
 g |
 i |
 s

 		 	

 		
 c	

 	
 	
 calculate	

 	
 	
 common_interest	

 		 	

 		
 e	

 	
 	
 evolve	

 	
 	
 exceptions	

 		 	

 		
 f	

 	
 	
 figure	

 		 	

 		
 g	

 	
 	
 games	

 	
 	
 godfreysmith2013communication	

 		 	

 		
 i	

 	
 	
 info	

 		 	

 		
 s	

 	
 	
 skyrms2010signals	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V

A

 	
 	add_signal_receiver() (evolve.Agent method)

 	add_signal_sender() (evolve.Agent method)

 	Agent (class in evolve)

 	analyse_games_3x3() (in module godfreysmith2013communication)

 	analyse_games_3x3_c_and_k() (in module godfreysmith2013communication)

 	assortment() (evolve.OnePop method)

 	
 	avg_payoff() (evolve.OnePop method)

 	avg_payoff_vector() (evolve.OnePop method)

 	avg_payoffs() (games.Chance method)

 	(games.NonChance method)

 	(games.NoSignal method)

 	avg_payoffs_regular() (games.ChanceSIR method)

B

 	
 	Bar (class in figure)

 	baseline_payoffs() (info.Shea method)

 	
 	bayes_theorem() (in module info)

 	blahut() (info.RDT method)

 	BushMostellerSR (class in evolve)

C

 	
 	C() (in module common_interest)

 	C_chance() (common_interest.CommonInterest_1_pop method)

 	(common_interest.CommonInterest_2_pops method)

 	C_nonchance() (common_interest.CommonInterest_1_pop method)

 	(common_interest.CommonInterest_2_pops method)

 	calc_condition() (info.Shea method)

 	calc_condition_common() (info.Shea method)

 	calc_condition_receiver() (info.Shea method)

 	calc_condition_sender() (info.Shea method)

 	calc_distortion() (info.RDT method)

 	calc_dmin() (info.Shea method)

 	calc_entries() (info.Shea method)

 	calc_entries_dmin() (info.Shea method)

 	calc_entries_receiver() (info.Shea method)

 	calc_entries_sender() (info.Shea method)

 	calc_rate() (info.RDT method)

 	calc_summation() (info.Shea method)

 	
 calculate

 	module

 	calculate_C() (in module godfreysmith2013communication)

 	calculate_D() (in module godfreysmith2013communication)

 	calculate_Ks_and_Kr() (in module godfreysmith2013communication)

 	calculate_results_per_c() (godfreysmith2013communication.GodfreySmith2013_1 method)

 	(godfreysmith2013communication.GodfreySmith2013_2 method)

 	
 	calculate_results_per_c_and_k() (godfreysmith2013communication.GodfreySmith2013_3 method)

 	calculate_stats() (evolve.BushMostellerSR method)

 	(evolve.MatchingSR method)

 	(evolve.MatchingSRInvention method)

 	Chance (class in games)

 	ChanceNodeError

 	ChanceSIR (class in games)

 	choose_state() (games.Chance method)

 	(games.ChanceSIR method)

 	choose_strategy() (evolve.Agent method)

 	codec_init() (info.OptimizeMessages method)

 	codec_init_random() (info.OptimizeMessages method)

 	
 common_interest

 	module

 	CommonInterest_1_pop (class in common_interest)

 	CommonInterest_2_pops (class in common_interest)

 	cond_init() (info.OptimizeRate method)

 	conditional_entropy() (in module info)

 	create_gambit_game() (games.Chance method)

 	(games.NonChance method)

 	create_games_demo() (godfreysmith2013communication.GodfreySmith2013_1 method)

 	(godfreysmith2013communication.GodfreySmith2013_2 method)

D

 	
 	demo_warning() (figure.Figure class method)

 	discrete_replicator_delta_X() (evolve.OnePop method)

 	(evolve.TwoPops method)

 	
 	dist_constraint() (info.OptimizeRate method)

 	dist_tensor_from_game() (info.RDT method)

 	distortion() (info.OptimizeMessages method)

E

 	
 	enc_dec_init() (info.OptimizeMessageEntropy method)

 	entropy() (in module info)

 	escalar_product_map() (in module info)

 	
 evolve

 	module

 	
 	
 exceptions

 	module

 	expected_for_act() (info.Shea method)

F

 	
 	
 figure

 	module

 	Figure (class in figure)

 	find_games_3x3() (in module godfreysmith2013communication)

 	find_games_3x3_c_and_k() (in module godfreysmith2013communication)

 	from_cond_to_RD() (info.RDT method)

 	
 	from_conditional_to_joint() (in module info)

 	from_joint_to_conditional() (in module info)

 	functional_content() (info.Shea method)

 	functional_content_dmin() (info.Shea method)

 	functional_content_receiver() (info.Shea method)

 	functional_content_sender() (info.Shea method)

G

 	
 	gambit_example() (in module games)

 	
 games

 	module

 	gen_dist_func() (info.OptimizeMessageEntropy method)

 	gen_lin_constraint() (info.OptimizeMessageEntropy method)

 	(info.OptimizeMessages method)

 	(info.OptimizeRate method)

 	gen_nonlin_constraint() (info.OptimizeMessageEntropy method)

 	
 	get_random_payoffs() (in module godfreysmith2013communication)

 	GodfreySmith2013_1 (class in godfreysmith2013communication)

 	GodfreySmith2013_2 (class in godfreysmith2013communication)

 	GodfreySmith2013_3 (class in godfreysmith2013communication)

 	GodfreySmith2013_3_receiver (class in godfreysmith2013communication)

 	GodfreySmith2013_3_sender (class in godfreysmith2013communication)

 	
 godfreysmith2013communication

 	module

H

 	
 	has_info_using_equilibrium (games.Chance property)

 	
 	highest_info_using_equilibrium (games.Chance property)

I

 	
 	InconsistentDataException

 	
 info

 	module

 	Information (class in info)

 	initialize_simulation() (skyrms2010signals.Skyrms2010_10_5 method)

 	(skyrms2010signals.Skyrms2010_1_1 method)

 	(skyrms2010signals.Skyrms2010_1_2 method)

 	(skyrms2010signals.Skyrms2010_3_3 method)

 	(skyrms2010signals.Skyrms2010_3_4 method)

 	(skyrms2010signals.Skyrms2010_4_1 method)

 	(skyrms2010signals.Skyrms2010_8_1 method)

 	(skyrms2010signals.Skyrms2010_8_2 method)

 	(skyrms2010signals.Skyrms2010_8_3 method)

 	
 	initialize_simulations() (skyrms2010signals.Skyrms2010_5_2 method)

 	intra_tau() (in module common_interest)

 	is_Nash() (common_interest.Nash method)

 	is_pooling() (evolve.Reinforcement method)

K

 	
 	K() (common_interest.CommonInterest_1_pop method)

 	(common_interest.CommonInterest_2_pops method)

L

 	
 	lewis_square() (in module games)

 	lin_constraint() (info.OptimizeRate method)

 	
 	load_saved_games() (godfreysmith2013communication.GodfreySmith2013_1 method)

 	(godfreysmith2013communication.GodfreySmith2013_2 method)

 	(godfreysmith2013communication.GodfreySmith2013_3 method)

M

 	
 	make_calc_MD() (info.OptimizeMessages method)

 	make_calc_RD() (info.OptimizeMessageEntropy method)

 	(info.OptimizeRate method)

 	marker_color (figure.Scatter property)

 	marker_size (figure.Scatter property)

 	Matching (class in evolve)

 	MatchingSIR (class in evolve)

 	MatchingSR (class in evolve)

 	MatchingSRInvention (class in evolve)

 	max_mutual_info (games.Chance property)

 	message_entropy() (info.OptimizeMessageEntropy method)

 	minimize_distortion() (info.OptimizeMessageEntropy method)

 	
 module

 	calculate

 	common_interest

 	evolve

 	exceptions

 	figure

 	games

 	godfreysmith2013communication

 	info

 	skyrms2010signals

 	
 	ModuleNotInstalledException

 	mutationmatrix() (in module evolve)

 	mutual_info_from_joint() (in module info)

 	mutual_info_messages_acts() (info.Information method)

 	mutual_info_states_acts() (info.Information method)

 	mutual_info_states_messages() (info.Information method)

N

 	
 	Nash (class in common_interest)

 	NoDataException

 	NonChance (class in games)

 	normal_payoffs() (info.Shea method)

 	
 	normalize_axis() (in module info)

 	normalize_distortion() (in module info)

 	normalize_vector() (in module info)

 	NoSignal (class in games)

O

 	
 	one_basin_aux() (in module calculate)

 	one_basin_aux_mixed() (in module calculate)

 	one_basin_discrete() (in module calculate)

 	one_basin_discrete_aux() (in module calculate)

 	one_basin_mixed() (in module calculate)

 	one_basin_ode_aux() (in module calculate)

 	
 	one_batch() (in module calculate)

 	one_pop_pure_strats() (games.Chance method)

 	OnePop (class in evolve)

 	OptimizeMessageEntropy (class in info)

 	OptimizeMessages (class in info)

 	OptimizeRate (class in info)

P

 	
 	payoff() (games.Chance method)

 	(games.NonChance method)

 	(games.NoSignal method)

 	payoff_intermediary() (games.ChanceSIR method)

 	payoff_receiver() (games.ChanceSIR method)

 	payoff_sender() (games.ChanceSIR method)

 	periodic_vector() (in module common_interest)

 	
 	pop_to_mixed_strat() (evolve.OnePop method)

 	pop_vector() (in module calculate)

 	prob_constraint() (info.OptimizeMessageEntropy method)

 	(info.OptimizeMessages method)

 	(info.OptimizeRate method)

 	properties (figure.Figure property)

 	pure_strats() (games.NoSignal method)

Q

 	
 	Quiver (class in figure)

 	
 	Quiver2D (class in figure)

 	Quiver3D (class in figure)

R

 	
 	random_player() (evolve.OnePop method)

 	random_receiver() (evolve.TwoPops method)

 	random_sender() (evolve.TwoPops method)

 	rate() (info.OptimizeRate method)

 	RDT (class in info)

 	receiver_avg_payoff() (evolve.TwoPops method)

 	receiver_K() (common_interest.CommonInterest_1_pop method)

 	(common_interest.CommonInterest_2_pops method)

 	receiver_payoff() (games.Chance method)

 	receiver_pure_strats() (games.Chance method)

 	(games.NonChance method)

 	receiver_to_mixed_strat() (evolve.TwoPops method)

 	record_probability_of_success() (evolve.MatchingSIR method)

 	Reinforcement (class in evolve)

 	replicator_discrete() (evolve.OnePop method)

 	(evolve.TwoPops method)

 	replicator_dX_dt_ode() (evolve.TwoPops method)

 	replicator_dX_dt_odeint() (evolve.OnePop method)

 	(evolve.TwoPops method)

 	replicator_jacobian_ode() (evolve.TwoPops method)

 	replicator_jacobian_odeint() (evolve.OnePop method)

 	(evolve.TwoPops method)

 	
 	replicator_ode() (evolve.TwoPops method)

 	replicator_odeint() (evolve.OnePop method)

 	(evolve.TwoPops method)

 	reset() (evolve.Reinforcement method)

 	(figure.Bar method)

 	(figure.Figure method)

 	(figure.Quiver2D method)

 	(figure.Quiver3D method)

 	(figure.Scatter method)

 	(figure.Surface method)

 	(figure.Ternary method)

 	run() (evolve.Reinforcement method)

 	run_orbits() (skyrms2010signals.Skyrms2010_4_1 method)

 	run_simulation() (skyrms2010signals.Skyrms2010_10_5 method)

 	(skyrms2010signals.Skyrms2010_1_1 method)

 	(skyrms2010signals.Skyrms2010_1_2 method)

 	(skyrms2010signals.Skyrms2010_3_3 method)

 	(skyrms2010signals.Skyrms2010_3_4 method)

 	(skyrms2010signals.Skyrms2010_8_1 method)

 	(skyrms2010signals.Skyrms2010_8_2 method)

 	(skyrms2010signals.Skyrms2010_8_3 method)

 	run_simulations() (skyrms2010signals.Skyrms2010_5_2 method)

S

 	
 	Scatter (class in figure)

 	sender_avg_payoff() (evolve.TwoPops method)

 	sender_K() (common_interest.CommonInterest_1_pop method)

 	(common_interest.CommonInterest_2_pops method)

 	sender_payoff() (games.Chance method)

 	sender_pure_strats() (games.Chance method)

 	(games.NonChance method)

 	sender_to_mixed_strat() (evolve.TwoPops method)

 	Shea (class in info)

 	show() (figure.Bar method)

 	(figure.Figure method)

 	(figure.Quiver2D method)

 	(figure.Quiver3D method)

 	(figure.Scatter method)

 	(figure.Surface method)

 	(figure.Ternary method)

 	(skyrms2010signals.Skyrms2010_5_2 method)

 	(skyrms2010signals.Skyrms2010_8_1 method)

 	(skyrms2010signals.Skyrms2010_8_2 method)

 	
 	Skyrms2010_10_5 (class in skyrms2010signals)

 	Skyrms2010_1_1 (class in skyrms2010signals)

 	Skyrms2010_1_2 (class in skyrms2010signals)

 	Skyrms2010_3_3 (class in skyrms2010signals)

 	Skyrms2010_3_4 (class in skyrms2010signals)

 	Skyrms2010_4_1 (class in skyrms2010signals)

 	Skyrms2010_5_2 (class in skyrms2010signals)

 	Skyrms2010_8_1 (class in skyrms2010signals)

 	Skyrms2010_8_2 (class in skyrms2010signals)

 	Skyrms2010_8_3 (class in skyrms2010signals)

 	
 skyrms2010signals

 	module

 	stability() (in module common_interest)

 	stable_vector() (in module common_interest)

 	step() (evolve.BushMostellerSR method)

 	(evolve.MatchingSIR method)

 	(evolve.MatchingSR method)

 	(evolve.MatchingSRInvention method)

 	Surface (class in figure)

T

 	
 	tau() (in module common_interest)

 	tau_per_rows() (in module common_interest)

 	Ternary (class in figure)

 	
 	test_endstate() (in module calculate)

 	Times (class in evolve)

 	total_tau() (in module common_interest)

 	TwoPops (class in evolve)

U

 	
 	unconditional_probabilities() (in module info)

 	update_conditional() (info.RDT method)

 	
 	update_strategies() (evolve.Agent method)

 	update_strategies_bush_mosteller() (evolve.Agent method)

 	uv_from_xy() (figure.Quiver2D method)

V

 	
 	vector_to_barycentric() (figure.Quiver3D method)

 	
 	vector_to_populations() (evolve.TwoPops method)

 nav.xhtml

 Table of Contents

 		
 Evoke: Evolutionary signalling games with Python

 		
 Usage

 		
 Installation

 		
 Tutorial

 		
 The simplest case: reproducing a figure from the literature

 		
 Creating simulations

 		
 Examples

 		
 Skyrms (2010) Signals

 		
 Skyrms2010_1_1

 		
 Skyrms2010_1_2

 		
 Skyrms2010_3_3

 		
 Skyrms2010_3_4

 		
 Skyrms2010_4_1

 		
 Skyrms2010_5_2

 		
 Skyrms2010_8_1

 		
 Skyrms2010_8_2

 		
 Skyrms2010_8_3

 		
 Skyrms2010_10_5

 		
 Godfrey-Smith & Martínez (2013)

 		
 How to use this script

 		
 GodfreySmith2013_1

 		
 GodfreySmith2013_2

 		
 GodfreySmith2013_3

 		
 GodfreySmith2013_3_sender

 		
 GodfreySmith2013_3_receiver

 		
 calculate_D()

 		
 calculate_C()

 		
 calculate_Ks_and_Kr()

 		
 find_games_3x3()

 		
 analyse_games_3x3()

 		
 find_games_3x3_c_and_k()

 		
 analyse_games_3x3_c_and_k()

 		
 get_random_payoffs()

 		
 Full API

 		
 Figure objects figure.py

 		
 Figure

 		
 Scatter

 		
 Quiver

 		
 Quiver2D

 		
 Quiver3D

 		
 Bar

 		
 Ternary

 		
 Surface

 		
 Evolve objects evolve.py

 		
 OnePop

 		
 TwoPops

 		
 Reinforcement

 		
 Matching

 		
 MatchingSR

 		
 MatchingSRInvention

 		
 MatchingSIR

 		
 BushMostellerSR

 		
 Agent

 		
 Times

 		
 mutationmatrix()

 		
 Game objects games.py

 		
 Chance

 		
 ChanceSIR

 		
 NonChance

 		
 NoSignal

 		
 lewis_square()

 		
 gambit_example()

 		
 Calculations calculate.py

 		
 one_basin_discrete()

 		
 one_basin_discrete_aux()

 		
 one_basin_mixed()

 		
 one_basin_aux_mixed()

 		
 one_basin_aux()

 		
 one_basin_ode_aux()

 		
 one_batch()

 		
 pop_vector()

 		
 test_endstate()

 		
 Calculations relating to common interest common_interest.py

 		
 CommonInterest_1_pop

 		
 CommonInterest_2_pops

 		
 C()

 		
 tau()

 		
 intra_tau()

 		
 total_tau()

 		
 tau_per_rows()

 		
 Nash

 		
 stability()

 		
 stable_vector()

 		
 periodic_vector()

 		
 Calculations relating to information theory info.py

 		
 Information

 		
 RDT

 		
 OptimizeRate

 		
 OptimizeMessages

 		
 OptimizeMessageEntropy

 		
 Shea

 		
 conditional_entropy()

 		
 mutual_info_from_joint()

 		
 unconditional_probabilities()

 		
 normalize_axis()

 		
 from_joint_to_conditional()

 		
 from_conditional_to_joint()

 		
 bayes_theorem()

 		
 entropy()

 		
 escalar_product_map()

 		
 normalize_vector()

 		
 normalize_distortion()

 		
 Exceptions exceptions.py

 		
 ChanceNodeError

 		
 NoDataException

 		
 InconsistentDataException

 		
 ModuleNotInstalledException

_static/plus.png

_static/file.png

_static/minus.png

